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Adaptive anti-synchronization of 
nuclear spin generator (NSG) systems 

with fully uncertain parameters 
 
 
 
 
 
A B S T R A C T  
 

 

This article addresses control for the chaos anti-

synchronization of a high frequency oscillator nuclear 

spin generator (NSG), which generates and controls the 

oscillations of the motion of a nuclear magnetization 

vector in a magnetic field. Based on the Lyapunov 

stability theory, an adaptive control law is derived to 

make the states of two identical (NSG) asymptotically 

anti-synchronized with uncertain parameters. Finally, a 

numerical simulation is presented to show the 

effectiveness of the proposed chaos anti-

synchronization scheme . 
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Introduction 

Friction   The presence of chaos in physical 

systems has been extensively demonstrated 

and is very common. The main property of 

chaotic dynamics is critical sensitivity to 

initial conditions, which is responsible for 

initially neighboring trajectories separating 

from each other exponentially in the course 

of time. For many years, this feature made 

chaos undesirable, insofar as the sensitivity 

to the initial conditions of chaotic systems 

reduces their predictability over long time 

scales. On other hand, the capability of 

chaotic dynamics to amplify small 

perturbations improves their utility for 

reaching specific desired states with very 

high flexibility and low energy cost. Indeed, 

large alterations to achieve a desired 

behavior are in general experimentally 

unpractical, nor can a typical a system suffer 

them without substantially changing its 

main dynamical properties. Inconstant, the 

process of controlling chaos is directed to 

improving a desired behavior by making 

only small time-dependent perturbations in 

an accessible system parameter or 

dynamical variable. There are many 

practical reasons why we need to control 

chaos.We can see its usefulness in an 

artificial intelligent system whereby 

suppressing its chaotically will improve the 

system's performance. Also, the presence of 

chaos can be very advantageous in fluid 

mixing procedures. Another example where 

controlled chaos can be seen in biological or 

chemical systems where they exhibit chaotic 

behavior [1].Chaos control and 

synchronization have received an 

increasing attention due to their potential 

and powerful applications [2,3]. Since the  

 

drive-response concept is introduced by 

Pecora and Carrol in their pioneering work 

[4], a variety of approaches have been 

proposed for the synchronization of chaotic 

systems, such linear and non-linear 

feedback synchronization [5-7], generalized 

synchronization[8].impulsive 

enthronization [9], lag synchronization [10], 

generalized projective synchronization [11] 

,etc.. However, most of above-mentioned 

methods are barely applied in certain 

chaotic systems with certain parameters. As 

a matter of fact, there always exits 

parameter mismatched and distortions in 

the physical world, so, chaos control and 

synchronization with uncertain parameters 

are universal and has received a significant 

attention for their potential applications in 

the past work [12-16]. The idea of anti-

synchronization that is the state vectors of 

the synchronized systems have the same 

amplitude but opposite signs as those of the 

driving system. Therefore, the sum of two 

signals are expected to converge to zero 

which can be addressed as follows: 

Consider a class of chaotic systems 

described by 

( , ) (1)

( , ) ( , , ) (2)

x f t x

y g t y u t x y

=

= +  

Wher 
, nx y R

 are the state vectors, 

, : n nf g R R→
 are differentiable 

functions. Eq(1) is the derive system and 

Eq(2)  is the response system, 
( , , )u t x y

 is 

the control input. For the system (1) and 

system (2), it is said that they possess the 

property of anti-synchronization between 

( )x t
 and 

( )y t
, if there exists an anti-
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synchronization manifold 

( ( ), ( 0): ( ) ( )M x t y t x t y t= = −
 such 

that all trajectories 
( ( ), ( ))x t y t

approach 

M as time goes to infinity, that is to say, 

lim lim 0 (3)
t t

e y x
→ →

= + =

The rest of the paper is organized as follows. 

Section 2 gives a brief description of the 

nuclear spin generator (NSG), and we 

present chaos anti-synchronization 

between two identical nuclear spin 

generator (NSG) via adaptive control, 

section 3 provides a numerical example to 

demonstrate the effectiveness of the 

proposed method, concluding remark is 

given in section 4 finally. 

Mathematical Models and Systems 

Description 

The NSG problem was studied by Sachdev 

and Sarthy [17] and Hegazi et al.[18,19]. 

They showed that the system display rich 

and typical bifurcation and chaotic 

phenomena for some values of the control 

parameters. NSG is a high frequency 

oscillator which generates and controls the 

oscillations of the motion of a nuclear 

magnetization vector in a magnetic field. 

This equation has the form 

2

(4)

(1 )

(1 )

x x y

y x y kz

z z ky





 

= − +

= − − −

= − −  

here 
,x y

and  z   are the components of the 

nuclear magnetization vector in the  ,X Y

and  Z directions and ,   and K are 

parameters,where 0   and 0   are 

linear damping terms, the nonlinearity 

parameters   and  k are proportional to 

the amplifier gain in the voltage feedback. 

Physical considerations limit the parameter  

 to the range  0 1   [20]. When the 

parameters are selected as

0.15, 0.75 = =   and 10.5k = , the 

system(4) exhibits chaotic attractor. Now, 

we assume that we have two (NSG) systems 

where the master system with subscript 1 

drives the slave system having identical 

equations denoted by the subscript 2. For 

the systems(4), the master(or drive) and 

slave (or response) syatems are defined 

below, respectively, 

1 1 1 1

1 1 1 1 1 1

2

1 1 1 1 1 1

(5)

(1 )

(1 )a

x x y

y x y k z

z z k y





  

= − +

= − − −

= − −  

And the response system can be written as 

2 2 2 1 2

2 2 2 2 2 2 2

2

2 2 2 2 2 2 2 3

(6)

(1 )

(1 )

x x y u

y x y k z u

z z k y u





  

= − + +

= − − − +

= − − +

Where 1 1 1, , k 
and 2 2 2, ,k 

 are 

parameters of of the drive and slave systems 

which needs to be estimated, and 1 2,u u
and  

3u
are nonlinear controller such that two 

(NSG) systems can be anti-synchronized. 

Adding Eq.(5) to Eq.(6) yields error 

dynamical system between Eqs(5) and (6). 
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1 1 1 1 2 2 2 1

2 1 1 1 1 1 2 2 2 2 2 2

2 2

3 1 1 1 1 1 1 2 2 2 2 2 2 3

(7)

(1 ) (1 )

(1 ) (1 )

e x y x y u

e x y k z x y k z u

e z k y z k y u

 

 

     

= − + + + +

= − − − − − − +

= − − + − − +  

where  1 1 2 2 1 2,e x x e y y= + = +
 

and  3 1 2e z z= +
.Here, our goal is to make 

anti-synchronization between two (NSG) 

systems by using adaptive control scheme 

, 1, 2,3iu i =
, when the parameter of the 

drive system is unknown and different with 

those of the response system, i.e., 
lim 0
t

e
→

=

, where 
 1 2 3

T
e e e e=

. For two (NSG) 

systems without control  
( 0, 1,2,3)iu i= =

, 

if the initial condition 

1 1 1 2 2 2( (0), (0), (0) (0), (0), (0))x y z x y z
 , the 

trajectories of the two identical systems will 

quickly separate each other and become 

irrelevant. However, for the two controlled 

(NSG)systems, the two systems will 

approach anti-synchronization for any 

initial condition by appropriate control gain. 

Now we define the parameters error as 

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
ˆ ˆˆ ˆˆ ˆ, , , , ,k k k k k k           = − = − = − = − = − = −

  

where 1 1 1 2 2 2
ˆ ˆˆ ˆˆ ˆ, , , , ,k k   

are estimated values of the unknown 

parameters 1 1 1 2 2 2, , , , ,k k   
respectively, 

let us choose a controller U and parameters 

update law 1 1 1
ˆˆ ˆ, , k 

and 2 2 2
ˆˆ ˆ, ,k 

as follows  

 

1 1 1 1 2 2 2 1

2 1 1 1 1 1 2 2 2 2 2 2

2 2

3 1 1 1 1 1 1 2 2 2 2 2 2 3

ˆ ˆ (8)

ˆ ˆˆ ˆ(1 ) (1 )

ˆ ˆˆ ˆ ˆ ˆˆ ˆ(1 ) (1 )

u x y x y e

u x y k z x y k z e

u z k y z k y e

 

 

     

= − + + + +

= − − − − − − +

= − − + − − +

And  

2

1 1 1 1 2 1 1 1 2 1 3 1 1 3 1 1 3

1 1 3 1 1 3

2

1 1 1 1 2 1 1 3

2

2 2 2 2 2 2 2 2 2 2 3 2 2 3 2 2 3

2 2 3 2 2 3

2

2 2 2 2 2 2 2 3

ˆ ˆˆ ˆ ˆ (9)

ˆ ˆˆ

ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ

ˆ ˆˆ

ˆ ˆ ˆ

x e y e k z y e e z e k y e

e z e

k z y e y e

x e y e k z y e e z e k y e

e z e

k z y e y e

  

  

 

  

  

 

= − − + + − −

= −

= −

= − − + + − −

= −

= −
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Consider a Lyapunov candidate as 

2 2 2 2 2 2

1 1 1 2 2 2

1 1
( )

2 2

TV e e k k   = + + + + + +
 then the time 

derivative of V along the trajectories of Eq.(7) is  

 

1 1 1 1 1 1 2 2 2 2 2 2

1 1 2 2 3 3 1 1 1 1

1 1 2 2 2 2 2 2

1 1 1 1 2 2 2 1 2 1 1 1 1 1 2 2 2 2 2

(10)

ˆ ˆ( ) ( )

ˆ ˆˆ ˆ( ) ( ) ( ) ( )

(1 ) (1 )

TV e e k k k k

e e e e e e

k k k k

e x y x y u e x y k z x y k z

       

   

   

   

= + + + + + +

= + + + − + −

+ − + − + − + −

= − + − + + + − − − − − − 2

2 2

3 1 1 1 1 1 1 2 2 2 2 2 2 3 1 1 1 1

1 1 2 2 2 2 2 2

2 2 2

1 2 3

ˆ ˆ(1 ) (1 ) ( ) ( )

ˆ ˆˆ ˆ( ) ( ) ( ) ( )

( )

u

e z k y z k y u

k k k k

e e e

         

   

+

 + − − + − − + + − + − 

+ − + − + − + −

= − + +

Since  V is a positive definite function and 

dV

dt  is a negative definite function, it 

translates to 
lim ( )
t

e t
→  based on the 

Lyapunov stability theorm [21]. Therefore, 

the response system (5) is anti-

synchronized with the drive system (4) with 

fully uncertain parameters under the 

adaptive controller (8) and the parameters 

update law (9). 

Numerical Simulations 

In this section, to verify and demonstrates 

the effectivenss of the proposed method, we 

discuss the simulation result for the anti-

synchronization between two identical 

(NSG) systems. In the numerical simulation, 

the fourth order Runge-Kutta method is 

used to solve the system with time step size 

0.001 . For this numerical simulation, we 

assum that the initial condition 

1 1 1( (0), (0), (0)) (1,1, 0.2)x y z = −
, and 

2 2 2( (0), (0), (0)) (0.5,0.5, 0.5)x y z = −
is 

employed. Hence the error system has the 

initial values 

1 2 3(0) 1.5 , (0) 1.5 , (0) 0.7e e e= = = −
. The 

unknown parameters are chosen as 

1 1 10.75 , 0.15 , 10.5k = = =
 and 

2 2 20.75 , 0.15 , 10.5k = = =
 in 

simulations so that the both systems 

exhibits a chaotic behavior, Anti-

synchronization of the systems (5) and (6) 

via adaptive control law (8) and (9) with the 

initial estimated parameters 

1 1 1 2 2 2
ˆ ˆˆ ˆˆ ˆ(0) (0) (0) (0) (0) (10,10,10,10,10,10)k k   = = = = = =

 as shown in the figures (1)-(2). Figures 

(1)(a-c) shows the state trajectories of drive 

system (5) and response system (6). Figure 

(2) shows the error signals 1 2 3, ,e e e
 

between two identical (NSG) systems under 

the controller (8) and the parameters 

update law (9). 
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Fig 1: State trajectory of drive system(5) and 

response system (6) 

 

 

 

 

Fig 2: The error signals 1 2 3, ,e e e
between two 

identical (NSG) systems . 

under the controller (8) and the parameters 

update law (9)  

 

 

 

 

 

 

Concluding Remark 

In this article, we investigate the anti-

synchronization of a high frequency 

oscillator nuclear spin generator (NSG). 

Based on the Lyapunov stability theory, as 

adaptive control law is derived to make the 

states of two identical (NSG) symptotically 

anti-synchronized with uncertain 

parameters. Finally a numerical simulation 

is provided to show the effectiveness of the 

proposed method. 
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