
22 
 

Journal of Advanced Sciences and Engineering Technologies (2024) 7 (2): 22-38 
 https:// https://doi.org/10.32441/jaset.07.01.02

Review of the Optimization Machine Learning Inverse of view –

Mode Fiber 

Al Smadi Takialddin1, Ayman Al Sawalha2 

1Faculty of Engineering, Jerash University, Jordan 

2Jerash University  

dsmaditakialddin@gmail.com, 

 
Keywords: 
 

Machine learning, Few-Mode fibers, mode division 

multiplexing, data rate communication 

 
A R T I C L E  I N F O  

 

Article history: 

Received :   01 December, 2023  

Accepted :   03 January 2024 

Available online 10 march 2024 
    

©2022 THIS IS AN OPEN ACCESS ARTICLE 

UNDER THE CC BY LICENSE 
http://creativecommons.org/licenses/by/4.0/ 

 

 

Citation :  
Takialddin, A. S. ., & Ayman , . A. S. (2024). Review of the 
Optimization Machine Learning Inverse of view –Mode Fiber 
. Journal of Advanced Sciences and Engineering 
Technologies, 7(1), 22–35. 
https://doi.org/10.32441/jaset.07.01.02 
 

  

 

 

A B S T R A C T  

The significance of optical fiber research in the digital 

realm is increasing because of its use in components, 

sensors, and high-speed data communication. The study of 

few-mode fiber (FMF) is experiencing a resurgence 

because of its capability to transmit data at high rates. This 

dissertation offers novel designs of FMFs with updated 

material composition and geometry to construct linkages 

using weakly coupled spatial division multiplexing (SDM) 

and mode division multiplexing (MDM). This study 

examines the necessary conditions for 5G networks and 

explores how they can be managed using spatial 

multiplexing and mode multiplexing techniques with a 

few-mode optical fiber. This method showcases the use of 

machine learning to simulate the profile of a few-mode 

fiber with a triangular-ring-core structure. It employs 

weak coupling optimisation to provide accurate 

predictions of refractive index differences and improved 

separation of spatial modes. Notably, this is accomplished 

using a data set that is six times smaller than that used in 

previous methods. 
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1. Introduction  

The utilization of several modes in few-mode 

fiber (FMF) for mode division multiplexing 

(MDM) is one method that can be utilised to 

circumvent the capacity bottleneck that is 

associated with optical communications based 

on single-mode fiber (SMF) [1,2,3]. MIMO 

processing, which stands for multiple input, 

multiple output, is required for tightly coupled 

systems because of the coupling between modes. 

This will result in a large rise in both the cost and 

the amount of power consumed [4,5,6,7]. As a 

result, a weakly coupled system based on a 

weekly coupled FMF would be more suitable in 

high-speed MDM communications because it 

has a lower complexity in signal processing 

[8.9]. Specifically, MIMO-less MDM 

communication can also be accomplished for 

optical connectors with a short distance [1-15]. 

The process of implementing a parametric 

sweep-based FMF design across a complex 

structure is time-consuming. Obtaining several 

parameters that fall within the prescribed range 

through simulation the use of simulation could 

be a challenging endeavor. The application of 

machine learning (ML) strategies is an efficient 

method for resolving difficult tasks. 

Furthermore, the application of the machine 

learning approach in inverse modelling is one of 

the most successful ways to achieve the required 

answers, particularly in situations where the 

target is already known [16]. Additionally, the 

use of the inverse modelling approach in the 

development of few-mode fibers through the 

application of machine learning is not only 

effective but also can be utilised multiple times. 

For various fiber designs, exact results can be 

obtained from applying machine learning 

algorithms and tweaking system parameters. 

The ML models successfully correlating the data 

that is being input with the data that is being 

output, which speeds up the design process. 

While there has been a deficiency in the amount 

of effort put forward in this particular domain, 

there remains the possibility of additional 

expansion. Therefore, a reverse model is 

developed to predict the profile parameters of 

ring-core FMFs (RC-FMFs). The objective of 

this model is to limit mode coupling (min ∆neff 

< 1 × 10−3) between surrounding LP modes 

while concurrently increasing the number of 

guided modes [17-20].  

One of the unique approaches to inverse 

modelling is shown here, which uses a machine 

learning technique based on regression. The 

objective of these regression models is to make 

predictions regarding the profile characteristics 

of two different RC-FMF structures to improve 

the transmission of poorly connected MDM. To 

anticipate a variety of profile parameters, three 

different regression models are utilised. These 

models are the ordinary least-square linear 

regression for multi-outputs, the k-nearest 

neighbors of multi-output regression, and the 

ID3 algorithm-based decision trees for multi-

output regression. For rapidly modelling RC-

FMFs, it has been conclusively established that 

the ID3-based decision tree is a machine 

learning model that is both reliable and accurate 

[21,22].During the first phase of this 

assignment, you will be responsible for 

developing a three-ring-core FMF by employing 

an inverse technique and using the projected 

profile parameters. Over the past few years, 

machine learning has emerged as a prominent 

example of cutting-edge technology innovation. 

To improve efficiency, produce forecasts, 

classify data, and create projections, this can be 

utilised across various disciplines. Using a 

neural network (NN) to implement machine 

learning (ML) for inversely building an RC-FMF 

structure is the approach that has been 

presented. Weak coupling in step-index few-

mode fibers has been demonstrated to be 

maximized through the implementation of an 

inverse design, as demonstrated by the authors 

in [23, 24, and 25]. To guide modes, they used a 

4-ring structure. In addition, they modified the 

profile parameters of a 6-ring structure to 

achieve 20 modes with weak coupling. 
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METHOD AND METHODOLOGY 

A new RC-FMF has been proposed for weak 

coupling optimisation and fabrication 

feasibility. This FMF structure is similar to SIF 

but has a restricted set of design characteristics. 

The fiber is created using inverse modelling and 

machine learning to achieve a specific number 

of modes with minimal interaction. The 

proposed design features three rings to simplify 

the fabrication process and uses silica as the 

host material. The refractive index profile 

variation of the ring core is determined by the 

radial distance, with the first, second, and third 

rings down-doped to minimize coupling 

between higher-order modes. The ring radius 

and refractive index difference are crucial 

profile characteristics of the proposed FMF [26, 

27, 28].The design aims to meet the cost-

effective fabrication criterion and improve the 

efficiency of mode-division multiplexing 

transmission. The proposed FMF is assumed to 

have three rings; hence, the parameters are 

noted with i = 1, 2, 3. The set of profile 

parameters that define the modal characteristics 

of the proposed FMF is [r1, r2, r3, Δ1, Δ2, Δ3]. 

 

 

 

 

(a) (b) 

Figure 1 (a) Refractive index profile as a function of radial distance and (b) cross-sectional view of 

the proposed ring-core FMF. 

Data Set Generation 

In machine learning, the initial step involves 

creating a sufficient dataset to ensure accurate 

prediction of the desired parameters. The ring-

core FMF parameters are adjusted to achieve 

the desired number of modes while minimizing 

coupling between neighboring guided modes. 

The finite element method (FEM)-based 

software COMSOL is used to input these 

parameters and find mode solutions [29].The 

data set is generated by altering the range of 

design parameters, resulting in a maximum of 

26 modes over a broad range of neff values. The 

primary parameters are guided modes, whereas 

the secondary parameters are the difference 

between neighboring modes, denoted as Δneff 

[30] The structural parameters of the proposed 

FMF are determined by training the models to 

anticipate a specific value of Δneff. The ML 

models are trained using structural parameters 

as inputs and the effective refractive index (neff) 

as outputs. Over 50% of the mode solutions 

meet the weak mode coupling criteria. Table 1 

Range of profile Parameters for the proposed 

three-ring-core FMF. 
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Parameters Minimu

m 

Maximu

m 

r1[µm 0.5 5 

r2[µm] 6.5 11 

r3[µm] 10 14 

Δ1[%] 0.002 0.025 

Δ2[%] 0.006 0.032 

Δ3[%] 0.001 0.01 

 

The Machine Learning Process 

The proposed FMF design process involves forward design and inverse modelling. The forward design 

creates a dataset for machine learning models, which creates a bridge between the desired 

Outputs and structural parameters. The inverse design process is fast and accurate, with 70% of the data 

for training and 30% for testing. The model's profile parameters are predicted Fig. 2. 

The inverse modeling, with the parameters chosen to minimize the error between actual and predicted 

values [1] 

 

Figure 2 Flow diagram of the regression-based inverse design process for the RC-FMF [1] 
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Optimisation techniques for FMFs 

Frequency Modulation philters (FMFs) are 

complex systems with a limited number of 

modes, making them difficult to optimize. 

Genetic algorithms (GAs) are suitable for multi-

objective optimisation but have increased 

computational complexity as the number of 

degrees of freedom increases. Particle Swarm 

optimisation (PSO) is an alternative approach 

that uses simple mathematical rules to 

continuously modify positions in the search 

space. PSO is computationally more economical 

than GAs for continuous design variables but 

may be less accurate for complicated designs 

[31,32]. 

Deep Neural Networks (DNNs) can establish 

intricate, non-linear conations between inputs 

and outputs using a large dataset of training 

examples to learn and predict complex 

structures with multiple variables. However, the 

precision of DNNs is greatly influenced by the 

magnitude of the training dataset, which often 

requires significant physics-based simulations. 

To minimize computational expense in deep 

neural network applications, various device-

specific approaches have been developed, such 

as Generative adversarial networks for 

optimizing met gratings and Generative Inverse 

Design Networks (GIDNs)[33,34]. 

 GIDNs significantly decrease the amount of 

training data needed to obtain high-quality 

designs by more than ten times in basic 

optimisation approaches that rely on gradients. 

Their active learning strategy involves 

systematically incorporating numerous designs 

close to optimal into the training set, surpassing 

conventional passive optimisation techniques 

with deep neural networks even when the 

amount of training data is greatly reduced [35-

38]. 

Inverse design using deep neural 

networks 

A deep neural network (DNN) that has been 

trained to analyses the structural characteristics 

of particular photonic systems can be employed 

to perform the inverse design of structures with 

predetermined qualities (see Figure 3 a). As a 

fundamental strategy, the weights and biases of 

the deep neural network (DNN) are 

immobilized once the training phase is over. 

Next, gradient descent is employed to iteratively 

adjust the configuration of the fiber by 

minimizing a freshly developed cost function 

(e.g., -Min|Δneff|, as demonstrated in [3]. 
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Fig. 4. Deep neural networks: (a) inverse design network (b) generative inverse design networks, and 

(c) proposed network[3] 

Deep neural networks (DNNs) face challenges 

when trained on datasets with randomly 

generated fibres. Although they can predict 

outcomes for these fibers, they may not provide 

precise mapping for ideal designs. Expanding 

the dataset can improve DNN accuracy, but 

optimisation of high-performance designs is 

hindered by the lack of prioritization of ideal 

solutions and the time-consuming process of 

creating datasets using physics-based 

simulations. Gradient descent optimisation 

techniques can face obstacles due to local 

minima or other key points where the function’s 

gradient diminishes. Although the Adam 

optimizer can alleviate issues with local optima, 

it is not entirely infallible in overcoming these 

hurdles [39,40]. 

 

Regression Model 

This study uses regression models to correlate 

the secondary target (Δneff) with the structural 

properties of the proposed Fiber-Film-Film 

(FMF) structure. However, it does not 

demonstrate enhanced accuracy with a reduced 

number of training samples.  Regression models 

utilised are ordinary least-square linear 

multiple regressions, k-nearest neighbor’s of 

multi-output regression, and multivariate ID3-

based decision trees. The decision tree (DT) 

approach is a supervised learning algorithm that 

is utilised for classification and prediction tasks. 

The system utilizes a hierarchical structure 

consisting of root nodes, decision nodes, and 

leaf nodes, all organized in a binary tree format. 

This study utilizes the ID3 algorithm, which 

employs a top-down methodology [41-45] The 

iteration process entails the start of entropy and 
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information gain for attributes, the selection of 

attributes with the highest information gain and 

smallest entropy, the creation of a subset of 

data, and the execution of subset processing for 

new attributes. The Python platform is used for 

performing activities. The ten-fold cross-

validation (CV) approach was employed to 

assess the accuracy and resilience of the models. 

A rotating sampling technique is employed to 

select 30% of the data from the complete 

dataset,  

showcasing the model’s precision in describing 

structural parameters. The negative mean 

absolute error is used for assessing the CV score, 

where the model with the lowest CV score is the 

most reliable [24]. 

The Id3-based decision tree for multi-output 

regression was found to be the most reliable and 

accurate machine learning model for inverse 

modelling of FMFs. Inverse modelling through 

ML learning is a breakthrough for the fibre 

industry and can be used for other complex FMF 

designs with better weak 

coupling optimization.(a) 

 

(b) 

Figure 4 (a) Mode-field distribution at 1550nm and (b) variation of jeff as a function of wavelength over 

the C-band for the proposed twenty-mode 3 ring-core FMF.[2] 
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The proposed FMF design, which incorporates 

weak coupling optimisation, has been 

successfully designed using machine learning. 

This approach can be expanded to include 

factors like loss, dispersion, DMD, and effective 

mode area. The ML-guided FMF designs, which 

support 5, 10, 15, and 20 modes and exhibit 

weak mode coupling, are promising for future 

communication systems using direct-detection 

MDM transmission. The study also expanded to 

forecast profile parameters for a distinct RC-

FMF to achieve weak coupling [46, 47]. 

Extension of inverse modelling 

The RC-FMF, a four-layer ring-core few-mode 

fiber, has a greater effective mode area (𝐴eff) 

compared to the normal circular-core FMF, 

resulting in low transmission loss, minimum 

nonlinearity, and negligible micro-bend loss to 

forecast the profile parameters of this structure, 

an inverse design technique is employed. The 

fiber geometry is described extensively, 

confirming the strength and ability of the 

regression-based machine learning method 

[48]. 

The design process for a weakly-linked four-

layer ring-core few-mode fiber is conducted 

using the commercially available Opti-wave 

platform. The simulation of the proposed work 

uses Opti-fiber 2 and Opti-System versions. The 

sequence of actions required in the complete 

procedure includes generating a suitable 

dataset, selecting design parameters, and 

adjusting the design parameters to achieve a 

certain number of modes with little interaction 

among some adjacent modes. The values 

provided in Table 5.6 are used as input for the 

Opt fiber programmer to calculate the mode 

solutions (𝑛eff) for each of the guiding modes. 

The mode solutions are organized in a 2000×17 

matrix for training and assessment. The model 

is evaluated by assuming that 80% of the data is 

allocated for training and 20% for testing. The 

decision tree-based regression model was 

chosen above linear regression and k-NN-based 

regression for the multi-output regression 

model.  

The decision tree model was determined to be 

the most accurate with lower error rates, 

facilitating the process of associating the 

secondary target (Δneffi = (neffi)  (neff(+1))) 

with the structural parameters of the proposed 

FMF[49]. 

In addition to DT, the proposed approach 

involves using linear regression and k-NN in 

multi-output regression models for RC-FMF. 

The task is completed using the Python 

programming language to demonstrate that DT 

offers the most accurate predicted parameters. 

 

(a) 
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(b) 

 

(c) 

Figure 5 Number of LP modes through the proposed RC-FMF as function (a) 

𝑎1and 𝛥2, (b) 𝑎2 and 𝛥1, and (c) 𝑎3 and 𝛥3 at 1550 nm 

Table 2 Range of profile parameters for the proposed RC-FMF to guide more than five to 10 modes 

Parameters 𝑎1[µm] 𝑎2[µm] 𝑎3[µm] 𝛥1[%] 𝛥2[%] 𝛥3[%] 

Minimum 6 7.5 11 0.004 0.001 0.002 

Maximum 10 12 15 0.015 0.005 0.01 
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Figure 6 representation of the decision tree-based regression model. Through the ten-fold CV score, 

R2-score, and correlation coefficients. 

 

An analysis was conducted to evaluate the 

precision and resilience of all three models. The 

results for each of the three regression models 

are presented and compared in Table 2. The 

findings indicate that the DT regression model 

is the most effective in predicting the profile 

characteristics of the proposed fiber. This 

conclusion is supported by a low CV score, high 

R2-score, and strong correlation coefficients. 

Error functions, such as Mean Squared Error 

(MSE), Root Mean Squared Error (RMSE), and 

Mean Absolute Error (MAE), are employed to 

assess the performance of the models. These 

error functions are presented in Table 2. Figure 

5 displays the real and forecasted results of the 

decision tree model across the data index for all 

six profile parameters to verify the precision of 

the trained model. The training dataset is 

defined as [𝑎1, 𝑎2, 𝑎3, Δ1, Δ2, Δ3, 𝑛eff1, 𝑛eff2, 

𝑛eff3, … . . , . . 𝑛effM, 𝑀], where 𝑛effi represents 

the effective refractive index of the 𝑖𝑡ℎ mode 

solution. This dataset is used for the M-number 

of modes. The dataset was generated with a 

minimum effective difference of 7.5 × 10−4 and 

a maximum effective 

difference of 1.5 × 10−3 [50]. 
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MDM Link Setup 

 The radial mode index of the RC-FMFs can 

be set to 1, which limits the number of modes 

in each high-order mode group to four. This 

reduces the complexity of MIMO (multiple-

input multiple-output) systems and 

simplifies the reception of higher-order 

mode groups. As the azimuthal mode order 

of the ring-core FMF increases, the coupling 

between nearby mode groups decreases. This 

potentially makes ring-core FMFs usable in 

higher-order mode space. The proposed 

FMF has six distinct data channels and is 

constructed using intensity modulation and 

direct detection concepts. This allows for 

MIMO-free signal processing at the receiver 

end. The performance of the link is 

demonstrated using commercially available 

Opti-system software [3

Figure 6 Weakly coupled MDM transmission link setup with the proposed inversely designed 

four-RC-FMF 

The Multimode fibre (MDM) system was 

assessed using a connation length adjusted 

to 0.18 dB/km propagation loss. 

Demultiplexed outputs were detected using 

six-pin photodetectors with a receiver 

sensitivity of 18 dBm. A low pass philter 

(LPF) is implemented to mitigate modal 

crosstalk. The performance was measured by 

measuring the bit error rate (BER), received 

power, and maximum Q-factor at a 

wavelength of 1550 nm across a 50-kilometer 

distance. The BER performance varies from 

10−39 to 10−9 over a distance of 10–50 km. 

Modes with less coupling exhibit superior 

BER performance. The four-RC-FMF 

architecture is used to transmit six modes, 

ensuring that the bit error rate (BER) for 

telecommunication applications remains 

below the permissible threshold of 10−9. The 

system operates over a distance of 50 km and 

achieves a data rate of 10 Gbps per channel 

[50]. 
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Modes LP01 LP11 LP21 LP31 LP41 LP51 

 

EYE Pattern 

 

 

 

 

 

 

 

 

  

Min BER 4.45e-9 3.82e-

11 

2.82e-

20 

6.82e-

21 

5.82e-

12 

4.12e-

9 

Max Q-factor 5.1 7.09 68.56 9.34 7.19 5.45 

Received 

power 

(dBm) 

-8.55 -6.31 -5.58 -4.45 -6.81 -8.45 

 

 

 

 

 

 

 

Figure 7 Link performance (BER versus link length) of the proposed inversely designed four-RC-

FMF at 1550 nm 

 

Result Conclusions   

The ML-based regression models are used 

for the first time to perform inverse 

modelling of RC-FMFs.  Three regression 

models are used to forecast the various 

profile parameters of the two types of RC-

FMF structures. These models include 

ordinary least-square linear multi-output 

regression, k-nearest neighbors of multi-

output regression, and ID3 algorithm-based 

decision trees for multi-output regression. 

The ring-core structures are chosen because 

of their superior qualities compared to 

alternative structures, as explained in the 

discussion. As the azimuthal mode order of 

ring-core FMF increases, the coupling 

between higher-order neighbouring mode 

group decreases. This property makes the 

proposed RC-FMF the most suitable choice 

for weakly coupled MDM systems. The 

decision tree for multi-output regression has 

been found to exhibit good accuracy for 

inverse modeling, compared to linear 

multiple regressions, k-NN regression, and 

the ID3-based decision tree regression 

model. Compared with linear regression, the 

DT model handles nonlinearity and 

collinearity more successfully. DT is a 

supervised learning algorithm, whereas k-

NN is an unsupervised learning algorithm. 

The decision tree used for multi-output 

regression demonstrated a significant level 

of precision, with a correlation coefficient of 

at least 99% and a minimal relative error 

ranging from 10−3 to 10−4. The DT model 
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predicts that the structural characteristics of 

the two types of RC-FMF will guide the 5, 10, 

15, and 20 modes, respectively. The 

predicted parameters are subsequently used 

to construct the suggested FMF using 

COMSOL and Opti-fiber. This leads to the 

establishment of a 6  10 Gbps MDM system 

by intensity modulation and direct dictation, 

which is achieved by employing the inversely 

planned four-RC-FMF. The connation has 

been established across six spatial modes 

that are poorly interconnected. Table 4 

presents a concise overview of the inverse 

modelling approach that has been addressed. 

Table 4 the inverse modelling of proposed 

RC-FMFs using DT-based regression models 

This inverse modelling process through ML 

is universally applicable and can be extended 

further to optimize other parameters like 

loss, dispersion, DMD, and effective mode 

area. The dataset can be further modified 

and reusable for predicting more number 

modes. 

 

 
Proposed FMF Structure 

Accuracy 
of ML 
model 
(%) 

Relative Error 
|𝑇𝑎𝑟𝑔𝑒𝑡−𝐴𝑐𝑡𝑢𝑎𝑙|
[×𝑇𝑎𝑟𝑔𝑒𝑡100] 

Maximu
m 
number 
of guided 
modes 

 
Min 
Δneff 

 
Max 
Δneff 

 

 
 
99.9 

 
 
10−3 to 10−7 

 
 
20 

 
 
1.01 
× 10−3 

 
 
5.04 
× 10−3 

 

 
 
99.5% 

 
 
10−3 to 10−4 

 
 
10 

 
 
1.5 
× 10−3 

 
 
3.5 
× 10−3 
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