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predictions of refractive index differences and improved
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1. Introduction

The utilization of several modes in few-mode
fiber (FMF) for mode division multiplexing
(MDM) is one method that can be utilised to
circumvent the capacity bottleneck that is
associated with optical communications based
on single-mode fiber (SMF) [1,2,3]. MIMO
processing, which stands for multiple input,
multiple output, is required for tightly coupled
systems because of the coupling between modes.
This will result in a large rise in both the cost and
the amount of power consumed [4,5,6,7]. As a
result, a weakly coupled system based on a
weekly coupled FMF would be more suitable in
high-speed MDM communications because it
has a lower complexity in signal processing
[8.9]. Specifically, MIMO-less MDM
communication can also be accomplished for
optical connectors with a short distance [1-15].

The process of implementing a parametric
sweep-based FMF design across a complex
structure is time-consuming. Obtaining several
parameters that fall within the prescribed range
through simulation the use of simulation could
be a challenging endeavor. The application of
machine learning (ML) strategies is an efficient
method for resolving difficult tasks.
Furthermore, the application of the machine
learning approach in inverse modelling is one of
the most successful ways to achieve the required
answers, particularly in situations where the
target is already known [16]. Additionally, the
use of the inverse modelling approach in the
development of few-mode fibers through the
application of machine learning is not only
effective but also can be utilised multiple times.
For various fiber designs, exact results can be
obtained from applying machine learning
algorithms and tweaking system parameters.
The ML models successfully correlating the data
that is being input with the data that is being
output, which speeds up the design process.
While there has been a deficiency in the amount
of effort put forward in this particular domain,
there remains the possibility of additional

expansion. Therefore, a reverse model is
developed to predict the profile parameters of
ring-core FMFs (RC-FMFs). The objective of
this model is to limit mode coupling (min Aneff
< 1 x 10-3) between surrounding LP modes
while concurrently increasing the number of
guided modes [17-20].

One of the unique approaches to inverse
modelling is shown here, which uses a machine
learning technique based on regression. The
objective of these regression models is to make
predictions regarding the profile characteristics
of two different RC-FMF structures to improve
the transmission of poorly connected MDM. To
anticipate a variety of profile parameters, three
different regression models are utilised. These
models are the ordinary least-square linear
regression for multi-outputs, the k-nearest
neighbors of multi-output regression, and the
ID3 algorithm-based decision trees for multi-
output regression. For rapidly modelling RC-
FMFs, it has been conclusively established that
the ID3-based decision tree is a machine
learning model that is both reliable and accurate
[21,22].During the first phase of this
assignment, you will be responsible for
developing a three-ring-core FMF by employing
an inverse technique and using the projected
profile parameters. Over the past few years,
machine learning has emerged as a prominent
example of cutting-edge technology innovation.
To improve efficiency, produce forecasts,
classify data, and create projections, this can be
utilised across various disciplines. Using a
neural network (NN) to implement machine
learning (ML) for inversely building an RC-FMF
structure is the approach that has been
presented. Weak coupling in step-index few-
mode fibers has been demonstrated to be
maximized through the implementation of an
inverse design, as demonstrated by the authors
in [23, 24, and 25]. To guide modes, they used a
4-ring structure. In addition, they modified the
profile parameters of a 6-ring structure to
achieve 20 modes with weak coupling.
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A new RC-FMF has been proposed for weak
coupling  optimisation and fabrication
feasibility. This FMF structure is similar to SIF
but has a restricted set of design characteristics.
The fiber is created using inverse modelling and
machine learning to achieve a specific number
of modes with minimal interaction. The
proposed design features three rings to simplify
the fabrication process and uses silica as the
host material. The refractive index profile
variation of the ring core is determined by the
radial distance, with the first, second, and third
rings down-doped to minimize coupling

between higher-order modes. The ring radius
and refractive index difference are crucial
n(r)

n('i(u!/(] - AZJI:nz
"c'mr!(1 + 44 )=n,

n

”cl’m!(l - 'ﬁ.f )=n;

i 1
clad _}.(—

profile characteristics of the proposed FMF [ 26,
27, 28]. The design aims to meet the cost-
effective fabrication criterion and improve the
efficiency of mode-division multiplexing
transmission. The proposed FMF is assumed to
have three rings; hence, the parameters are
noted with i = 1, 2, 3. The set of profile
parameters that define the modal characteristics
of the proposed FMF is [r1, r2, r3, A1, A2, A3].
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(a)

(b)

Refractive index profile as a function of radial distance and (b) cross-sectional view of
the proposed ring-core FMF.

In machine learning, the initial step involves
creating a sufficient dataset to ensure accurate
prediction of the desired parameters. The ring-
core FMF parameters are adjusted to achieve
the desired number of modes while minimizing
coupling between neighboring guided modes.
The finite element method (FEM)-based
software COMSOL is used to input these
parameters and find mode solutions [29].The
data set is generated by altering the range of
design parameters, resulting in a maximum of

26 modes over a broad range of neff values. The
primary parameters are guided modes, whereas
the secondary parameters are the difference
between neighboring modes, denoted as Aneff
[30] The structural parameters of the proposed
FMF are determined by training the models to
anticipate a specific value of Aneff. The ML
models are trained using structural parameters
as inputs and the effective refractive index (neff)
as outputs. Over 50% of the mode solutions
meet the weak mode coupling criteria. Table 1
Range of profile Parameters for the proposed
three-ring-core FMF.
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Parameters Minimu Maximu
m m

rifum 0.5 5

r2fum] 6.5 11

r3fum] 10 14

A1[%] 0.002 0.025

A2[%] 0.006 0.032

A3[%] 0.001 0.01

The Machine Learning Process

The proposed FMF design process involves forward design and inverse modelling. The forward design
creates a dataset for machine learning models, which creates a bridge between the desired

Outputs and structural parameters. The inverse design process is fast and accurate, with 70% of the data
for training and 30% for testing. The model's profile parameters are predicted Fig. 2.

The inverse modeling, with the parameters chosen to minimize the error between actual and predicted
values [1]
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Frequency Modulation philters (FMFs) are
complex systems with a limited number of
modes, making them difficult to optimize.
Genetic algorithms (GAs) are suitable for multi-
objective optimisation but have increased
computational complexity as the number of
degrees of freedom increases. Particle Swarm
optimisation (PSO) is an alternative approach
that uses simple mathematical rules to
continuously modify positions in the search
space. PSO is computationally more economical
than GAs for continuous design variables but
may be less accurate for complicated designs

[31,32].

Deep Neural Networks (DNNs) can establish
intricate, non-linear conations between inputs
and outputs using a large dataset of training
examples to learn and predict complex
structures with multiple variables. However, the
precision of DNNs is greatly influenced by the
magnitude of the training dataset, which often
requires significant physics-based simulations.

To minimize computational expense in deep
neural network applications, various device-
specific approaches have been developed, such
as Generative adversarial networks for

optimizing met gratings and Generative Inverse
Design Networks (GIDNSs)[33,34].

GIDNs significantly decrease the amount of
training data needed to obtain high-quality
designs by more than ten times in basic
optimisation approaches that rely on gradients.
Their active learning strategy involves
systematically incorporating numerous designs
close to optimal into the training set, surpassing
conventional passive optimisation techniques
with deep neural networks even when the
amount of training data is greatly reduced [35-
38].

A deep neural network (DNN) that has been
trained to analyses the structural characteristics
of particular photonic systems can be employed
to perform the inverse design of structures with
predetermined qualities ( Asa
fundamental strategy, the weights and biases of
the deep neural network (DNN) are
immobilized once the training phase is over.
Next, gradient descent is employed to iteratively
adjust the configuration of the fiber by
minimizing a freshly developed cost function
(e.g., -Min|Aneff|, as demonstrated in [3].
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Deep neural networks (DNNs) face challenges
when trained on datasets with randomly
generated fibres. Although they can predict
outcomes for these fibers, they may not provide
precise mapping for ideal designs. Expanding
the dataset can improve DNN accuracy, but
optimisation of high-performance designs is
hindered by the lack of prioritization of ideal
solutions and the time-consuming process of
creating  datasets using  physics-based
simulations. Gradient descent optimisation
techniques can face obstacles due to local
minima or other key points where the function’s
gradient diminishes. Although the Adam
optimizer can alleviate issues with local optima,
it is not entirely infallible in overcoming these
hurdles [39,40].

This study uses regression models to correlate
the secondary target (Aneff) with the structural
properties of the proposed Fiber-Film-Film
(FMF) structure. However, it does not
demonstrate enhanced accuracy with a reduced
number of training samples. Regression models
utilised are ordinary least-square linear
multiple regressions, k-nearest neighbor’s of
multi-output regression, and multivariate ID3-
based decision trees. The decision tree (DT)
approach is a supervised learning algorithm that
is utilised for classification and prediction tasks.
The system utilizes a hierarchical structure
consisting of root nodes, decision nodes, and
leaf nodes, all organized in a binary tree format.
This study utilizes the ID3 algorithm, which
employs a top-down methodology [41-45] The
iteration process entails the start of entropy and
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information gain for attributes, the selection of
attributes with the highest information gain and
smallest entropy, the creation of a subset of
data, and the execution of subset processing for
new attributes. The Python platform is used for
performing activities. The ten-fold cross-

\(

select 30% of the data from the complete
dataset,

showcasing the model’s precision in describing
structural parameters. The negative mean
absolute error is used for assessing the CV score,
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validation (CV) approach was employed to
assess the accuracy and resilience of the models.
A rotating sampling technique is employed to
The Id3-based decision tree for multi-output
regression was found to be the most reliable and
accurate machine learning model for inverse
modelling of FMFs. Inverse modelling through
coupling optimization.(a)

where the model with the lowest CV score is the
most reliable [24].

ML learning is a breakthrough for the fibre
industry and can be used for other complex FMF
designs with better weak
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(a) Mode-field distribution at 1550nm and (b) variation of jeff as a function of wavelength over
the C-band for the proposed twenty-mode 3 ring-core FMF.!2]
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The proposed FMF design, which incorporates
weak coupling optimisation, has been
successfully designed using machine learning.
This approach can be expanded to include
factors like loss, dispersion, DMD, and effective
mode area. The ML-guided FMF designs, which
support 5, 10, 15, and 20 modes and exhibit
weak mode coupling, are promising for future
communication systems using direct-detection
MDM transmission. The study also expanded to
forecast profile parameters for a distinct RC-
FMF to achieve weak coupling [46, 47].

The RC-FMF, a four-layer ring-core few-mode
fiber, has a greater effective mode area (Aeff)
compared to the normal circular-core FMF,
resulting in low transmission loss, minimum
nonlinearity, and negligible micro-bend loss to
forecast the profile parameters of this structure,
an inverse design technique is employed. The
fiber geometry is described extensively,
confirming the strength and ability of the
regression-based machine learning method

The design process for a weakly-linked four-
layer ring-core few-mode fiber is conducted
using the commercially available Opti-wave
platform. The simulation of the proposed work
uses Opti-fiber 2 and Opti-System versions. The

»

Number of LP modes

A, [%]

sequence of actions required in the complete
procedure includes generating a suitable
dataset, selecting design parameters, and
adjusting the design parameters to achieve a
certain number of modes with little interaction
among some adjacent modes. The values
provided in Table 5.6 are used as input for the
Opt fiber programmer to calculate the mode
solutions (neff) for each of the guiding modes.
The mode solutions are organized in a 2000x17
matrix for training and assessment. The model
is evaluated by assuming that 80% of the data is
allocated for training and 20% for testing. The
decision tree-based regression model was
chosen above linear regression and k-NN-based
regression for the multi-output regression
model.

The decision tree model was determined to be
the most accurate with lower error rates,
facilitating the process of associating the
secondary target (Aneffi = (neffi)_ (neff(+1)))
with the structural parameters of the proposed
FMF[49].

In addition to DT, the proposed approach
involves using linear regression and k-NN in
multi-output regression models for RC-FMF.
The task is completed using the Python
programming language to demonstrate that DT
offers the most accurate predicted parameters.

a, =a1+1 [m], A= 1%
a, =a2+1 [m], A3= 0.5%

10
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Figure 5 Number of LP modes through the proposed RC-FMF as function (a)
aland A2, (b) a2 and 41, and (c¢) a3 and 43 at 1550 nm
Table 2 Range of profile parameters for the proposed RC-FMF to guide more than five to 10 modes

Minimum |6 7.5 11 0.004 [0.001 [0.002

Maximum 10 12 15 0.015 |0.005 [0.01
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representation of the decision tree-based regression model. Through the ten-fold CV score,
R2-score, and correlation coefficients.

An analysis was conducted to evaluate the
precision and resilience of all three models. The
results for each of the three regression models
are presented and compared in Table 2. The
findings indicate that the DT regression model
is the most effective in predicting the profile
characteristics of the proposed fiber. This
conclusion is supported by a low CV score, high
R2-score, and strong correlation coefficients.
Error functions, such as Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), and
Mean Absolute Error (MAE), are employed to
assess the performance of the models. These
difference of 1.5 x 10-3 [50].

error functions are presented in Table 2. Figure
5 displays the real and forecasted results of the
decision tree model across the data index for all
six profile parameters to verify the precision of
the trained model. The training dataset is
defined as [a1, a2, a3, A1, A2, A3, neff1, neff2,
neffs, .... ., .. neffM, M], where neffi represents
the effective refractive index of the ith mode
solution. This dataset is used for the M-number
of modes. The dataset was generated with a
minimum effective difference of 7.5 x 10—4 and
a maximum effective
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The radial mode index of the RC-FMFs can
be set to 1, which limits the number of modes
in each high-order mode group to four. This
reduces the complexity of MIMO (multiple-
input multiple-output) systems and
simplifies the reception of higher-order
mode groups. As the azimuthal mode order
of the ring-core FMF increases, the coupling
between nearby mode groups decreases. This
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potentially makes ring-core FMFs usable in
higher-order mode space. The proposed
FMF has six distinct data channels and is
constructed using intensity modulation and
direct detection concepts. This allows for
MIMO-free signal processing at the receiver
end. The performance of the link is
demonstrated using commercially available
Opti-system software [ 3

OPT
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Figure 6 Weakly coupled MDM transmission link setup with the proposed inversely designed
four-RC-FMF

The Multimode fibre (MDM) system was
assessed using a connation length adjusted
to 0.18 dB/km propagation loss.
Demultiplexed outputs were detected using
six-pin photodetectors with a receiver
sensitivity of 18 dBm. A low pass philter
(LPF) is implemented to mitigate modal
crosstalk. The performance was measured by
measuring the bit error rate (BER), received
power, and maximum Q-factor at a
wavelength of 1550 nm across a 50-kilometer

distance. The BER performance varies from
10-39 to 10—9 over a distance of 10—50 km.
Modes with less coupling exhibit superior
BER performance. The four-RC-FMF
architecture is used to transmit six modes,
ensuring that the bit error rate (BER) for
telecommunication applications remains
below the permissible threshold of 10—9. The
system operates over a distance of 50 km and
achieves a data rate of 10 Gbps per channel

[50].
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The ML-based regression models are used
for the first time to perform inverse
modelling of RC-FMFs. Three regression
models are used to forecast the various
profile parameters of the two types of RC-
FMF structures. These models include
ordinary least-square linear multi-output
regression, k-nearest neighbors of multi-
output regression, and ID3 algorithm-based
decision trees for multi-output regression.
The ring-core structures are chosen because
of their superior qualities compared to
alternative structures, as explained in the
discussion. As the azimuthal mode order of
ring-core  FMF increases, the coupling
between higher-order neighbouring mode

group decreases. This property makes the
proposed RC-FMF the most suitable choice
for weakly coupled MDM systems. The
decision tree for multi-output regression has
been found to exhibit good accuracy for
inverse modeling, compared to linear
multiple regressions, k-NN regression, and
the ID3-based decision tree regression
model. Compared with linear regression, the
DT model handles nonlinearity and
collinearity more successfully. DT is a
supervised learning algorithm, whereas k-
NN is an unsupervised learning algorithm.
The decision tree used for multi-output
regression demonstrated a significant level
of precision, with a correlation coefficient of
at least 99% and a minimal relative error
ranging from 10-3 to 10—4. The DT model
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predicts that the structural characteristics of
the two types of RC-FMF will guide the 5, 10,
15, and 20 modes, respectively. The
predicted parameters are subsequently used
to construct the suggested FMF using
COMSOL and Opti-fiber. This leads to the
establishment of a 6 10 Gbps MDM system
by intensity modulation and direct dictation,
which is achieved by employing the inversely
planned four-RC-FMF. The connation has
been established across six spatial modes
that are poorly interconnected. Table 4
presents a concise overview of the inverse

modelling approach that has been addressed.
Table 4 the inverse modelling of proposed
RC-FMFs using DT-based regression models

This inverse modelling process through ML
is universally applicable and can be extended
further to optimize other parameters like
loss, dispersion, DMD, and effective mode
area. The dataset can be further modified
and reusable for predicting more number
modes.

Accuracy Relative Error Maximu
Proposed FMF Structure of ML | |Target-Actual| | m Min
model [xTarget100] number  Aneff
(%) of guided
modes
n(r)

R Dy 99.9 10-3 to 10-7 20 1.01 5.04
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