Nanomaterials for Soil Stabilizatioin: A Review
Main Article Content
Abstract
Weak soils, characterized by their low strength and high compressibility, pose significant challenges to construction projects. Traditional methods of soil stabilization often involve the use of lime or cement, which can be expensive and environmentally unfriendly. In recent years, nanomaterials have emerged as a promising alternative for improving the geotechnical properties of weak soils. This review study comprehensively investigates the application of various nanomaterials, including carbon nanotubes, nano clay, and nano-silica, to stabilize weak soils. The mechanisms of interaction between nanomaterials and soil particles are discussed, along with their effects on soil properties such as strength, stiffness, and permeability. Additionally, the environmental implications and economic feasibility of using nanomaterials for soil stabilization are considered. Based on the findings of this review, it is concluded that nanomaterials offer a viable and effective approach to enhance the geotechnical performance of weak soils and metastable soils such as gypseous soil. Further research is recommended to optimize the use of nanomaterials in practical applications and to address any potential challenges associated with their implementation.
Downloads
Metrics
Article Details
References
Shahin, S. S., Fayed, L. A. E., & Ahmad, H.(2015). Review of Nano additives in stabilization of Soil. Seventh International Conference on Nano-Technology in conference.
Ivasuc, T., Olinic, E., & Manea, S.(2015). Mechanical behavior of destructurated expansive clay. International Multidisciplinary Scientific GeoConference: SGEM, 2, 581. DOI: https://doi.org/10.5593/SGEM2014/B12/S2.074
Patel, A. (2019). Geotechnical investigations and improvement of ground conditions. Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-12-817048-9.00009-3
Athanasopoulou, A. (2014). Addition of lime and fly ash to improve highway subgrade soils, Journal of Materials in Civil Engineering. 26(4) 773-775. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000856
Eberemu, A.O,. Tukka, D.D, and Osinubi, K.J. Potential use of rice husk ash in the stabilization and solidification of lateritic soil contaminated with tannery effluent. Geo-Congress 2014 Technical Papers Geo-characterization and Modeling for Sustainability 2014, 2263-2272. DOI: https://doi.org/10.1061/9780784413272.221
Abbas, Y. A., Ibrahim, M. N.,& Hussein, M. K. (2018). Effects of rice husk ash magnesium oxide addition on wear behavior of aluminum alloy matrix hybrid composites. Tikrit Journal of Engineering Sciences, 25(4), 16-23. DOI: https://doi.org/10.25130/tjes.25.4.04
Zedan, A. J., Hummadi, R. A.,& Hussein, S. A. (2019). Effect of adding a mixture of (Concrete Waste and Asphalt Waste) on the properties of gypseous soil. Tikrit Journal of Engineering Sciences, 26(1), 20-25. DOI: https://doi.org/10.25130/tjes.26.1.03
Abbas, J. K., & Al-Luhaibi, H.M., A.,(2020). Influence of iron furnaces slag on collapsibility and shear strength of gypseous soil. Tikrit Journal of Engineering Sciences, 27(1), 65-71. DOI: https://doi.org/10.25130/tjes.27.1.09
Hamad, A. M., & Jassam, M. G. A. (2022). Comparative study of the effect of some
petroleum products on the engineering properties of gypseous soils. Tikrit Journal of Engineering Sciences, 29(3), 59-69.
Edeh, J.E,. Agbede, I.O,. and Tyoyila, A.(2014). Evaluation of sawdust ash–stabilized lateritic soil as highway pavement material. Journal of Materials in Civil Engineering, 26(2), 367-373. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000795
Kampala, S. A., Horpibulsuk, N. Prongmanee, and A. (2014). Chinkulkijniwat, A., Influence of wet-dry cycles on compressive strength of calcium carbide residue–fly ash stabilized clay. Journal of Materials in Civil Engineering, 26(4) 633-643. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000853
Brar, S. K., Verma, M., Tyagi, R. D., & Surampalli, R. Y. Engineered nanoparticles in wastewater and wastewater sludge–Evidence and impacts. Waste management 2010, 30(3), 504-520. DOI: https://doi.org/10.1016/j.wasman.2009.10.012
Ibrahim, R. K., Hamid, R., & Taha, M. R.(2012). Fire resistance of high-volume fly ash mortars with nanosilica addition. Construction and Building Materials, 36, 779-786. DOI: https://doi.org/10.1016/j.conbuildmat.2012.05.028
Ghasabkolaei, N., Choobbasti, A. J., Roshan, N., & Ghasemi, S. E.(2017). Geotechnical properties of the soils modified with nanomaterials: A comprehensive review. Archives of civil and mechanical engineering, 17(3), 639-650. DOI: https://doi.org/10.1016/j.acme.2017.01.010
Al-Saedy, M. A. E., Al Ameen B. O.A., Rulla. S., Hamed, W. M., & M. Dawood, M. K.(2020). Preparation method of Silver Nano particles. Journal of Advanced Sciences and Engineering Technologies, Vol.3 No 2, 1-8 DOI: https://doi.org/10.32441/jaset.03.02.01
Abdullah, A. H., Mohammed, M. T., Khamis, W. M., & Abbas, B. F.(2018). Carbon Nano tube and it`s medical applications. Journal of Advanced Sciences and Engineering Technologies, Vol. 1, No.3 DOI: https://doi.org/10.32441/jaset.01.03.05
Barhoum, A., & Makhlouf A.S.H.(2018). Emerging application of Nano-particle in architecture Nano-structure. Chapter12, vol. in Micro and Nano Technologies.
Taniguchi, N., On the basic concept on nanotechnology, in proceeding intl. Conf. prod. Eng. part I, Japan society of precision Engineering 1974, Tokyo, Japan, 18-23.
Gawande, M. B., Goswami, A., Felpin, F., Asefa, T., Huang, X., Silva, S., Zou, X., Zboril, R., Varma, R. S., & Chem. Rev. Acs. chemrev 2016, 116,3722-3811. DOI: https://doi.org/10.1021/acs.chemrev.5b00482
Wu, Y., Ali, M. R.K., Chen, K., Fang, N., & El-Sayed, M. A., Nano Today 2018, 24, 120-140. DOI: https://doi.org/10.1016/j.nantod.2018.12.006
Sun, M., Dong, H., Dougherty, A. W., Lu, Q., Peng, D., Wong, W., Huang, B., Sun, L., & C. Yan, Nano Energy 2019, 56, 473-481. DOI: https://doi.org/10.1016/j.nanoen.2018.11.086
Hochella, M. S., Mogk, D. W., Ranville, J., Allen, I. C., Luther, G. W., Marr, L. C., McGrail, B. P., Murayama, M., Qafoku, N.P., Rosso, K. M., Sahai, N., Schroeder, P. A., P Vikesland, P., Westerhoff, P., & Yang, Y., Science 2019, 363, u8299. DOI: https://doi.org/10.1126/science.aau8299
Mitter, N.,& Hussey, K., Nanotechnol. 2019, 14, 508-510. DOI: https://doi.org/10.1038/s41565-019-0464-4
Kajbafvala, A., M. Li., Bahmanpour, H., Maneshian, M.H., & Kauffmann,A.(2013). Nano/microstructured materials Rapid, low-cost and eco-friendly synthesis methods. J. Nanopart, (3), 530170. DOI: https://doi.org/10.1155/2013/530170
Taha, M. R., (2018), "Recent Developments in Nanomaterials for Geotechnical and Geo-environmental Engineering" MATEC Web of Conferences 149, pp 1-5. DOI: https://doi.org/10.1051/matecconf/201814902004
Majeed, Z. H., & Mohd, R. T.(2012). Effect of nanomaterial treatment on geotechnical properties of a Penang soft soil. Journal of Asian Scientific Research, 2.11, 587-592.
Majeed, Z.H., Taha, M.R., Jawad, I.T.(2014). Stabilization of soft soil using Nanomaterials. Research journal of applied sciences, Engineering and Technology, 8(4): 503-509. DOI: https://doi.org/10.19026/rjaset.8.999
Majeed, Z. H., & Mohd, R.T.(2016). The effects of using nanomaterials to improvement soft soils. Saudi J Eng Technol, 1.3, 58-63.
Al-Neami, M.A., Al-Soudany, K. Y., & Tarsh, N. M.(2021). The Potential Influence of Using Nanomaterials Additives on Unconfined Compressive Strength of Soft Soil. Earth and Environmental Science, 856 – 012008. DOI: https://doi.org/10.1088/1755-1315/856/1/012008
Waychunas, A. G. Christopher S. Kim., & Jillian F. B.(2005). Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. Springer, 409–433 DOI: https://doi.org/10.1007/s11051-005-6931-x
Fakhri. Z., R. Pourho seini, & Ebdi, T.(2015). Improvement in the Hydraulic properties of kaolinite with Adding Nano clay, Amirkabir journal of science and research, civil and Environmental Engineering (ASJR-CEE), 47 (3): 17-20.
Zahedi, M., Sharifipour, M., Jahanbakhshi, F., & Bayat, R.(2014). Nanoclay Performance on Resistance of Clay under Freezing Cycles. J. Appl. Sci. Environ. Manage, 18(3) 427 -434.
Changizi, F., & Haddad, A.(2015). Effect of Nano- sio2 on the Geotechnical properties of cohesive soil. Geotechnical and Geological Engineering, 34(2): 725-733. DOI: https://doi.org/10.1007/s10706-015-9962-9
Irani, M., Naseria, F., & Dehkhodarajabi, M.(2016). Effect of graphene oxide nanosheets on the geotechnical properties of cemented silty soil. Archives of Civil and Mechanical Engineering, 695-701. DOI: https://doi.org/10.1016/j.acme.2016.04.008
Garcia, S., Treju, P., Ramirez, O., Lopez-Molina, J., & Hernandez, N.(2017). Influence of Nano silica on Compressive strength of lacustrine soft clays. Proceedings of the 19th International conference on soil mechanics and Geotechnical Engineering, Seoul.
Moghadas, F. N., Ghavami, S., Farahani, B., & Jahanbakhsh, H. (2018). Effects of Silica Fume and Nano-silica on the Engineering Properties of Kaolinite Clay. AUT Journal of Civil Engineering, 2(2): 135-142.
Ghorbani, A., shooiili, H. H., Mohammadi, M., Sianati, F., Salimi, M., Sadowski, L., & Szymanowski, J. (2019). Effect of Selected Nanospheres on the Mechanical Strength of Lime-Stabilized High-Plasticity Clay Soils. Hindawi Advances in Civil Engineering, ID 4257530. DOI: https://doi.org/10.1155/2019/4257530
Barbhuiya, H. G., & Hasan, S. D.(2020). Effect of nano-silica on physio-mechanical properties and microstructure of soil: A comprehensive review. Materials Today: Proceedings, 2214-7853. DOI: https://doi.org/10.1016/j.matpr.2020.09.115
Thomas,G., & Rangaswamy, K.(2020). Strengthening of cement blended soft clay with nano-silica particles. Geomechanics and Engineering 2020 ,505-516.
Kulanthaivel,P., Selvakumar, S., Soundara, B., Kayalvizhi,V.S., and Bhuvaneshwari, S.(2021). Combined effect of nano silica and randomly distributed fibers on the strength behavior of clay soil. Springer, Nanotechnology for Environmental Engineering,41204-021-00176-3.
Q, Jili., Yawen, Z., Weiqing, Q., Xiaoshun, Z., Hu Lingqing, & Cheng Jinrui.(2021). Nano titanium oxide for modifying water physical property and acid-resistance of alluvial soil in Yangtze River estuary. Science and Engineering of Composite Materials; 28: 169–179 DOI: https://doi.org/10.1515/secm-2021-0016
Ghazavi, M., Kalhor, A., and Roustaei, M.(2022). Impacts of Nano-silica on Physical Properties and Shear Strength of Clayey Soil. Arabian Journal for Science and Engineering, 47(4): 5271–5279. DOI: https://doi.org/10.1007/s13369-021-06453-2
Jassim, N. W., Hassan, A. H., Mohammed, A. H., & Fattah, Y. M.(2022). Enhancement consistency and compaction characteristics of clayey soil using nano silica material. Periodicals of Engineering and Natural Sciences 2022, :77-83. DOI: https://doi.org/10.21533/pen.v10.i6.910
Sharma, D., Sanjeev, N., &Chandan, K., (2017). Stabilization of expansive soil using nanomaterials. Proceedings of the International Interdisciplinary Conference on Science Technology Engineering Management Pharmacy and Humanities, Singapore.
Al-Swaidani, A.M., Hammoud, I., al-Ghuraibi, I., Mezyab, A.(2019). Nanocalcined clay and Nano-lime as stabilizing Agent for Expansive clayey soil. some Geotechnical properties, Advances in Civil Engineering materials, 8(3): 327-345. DOI: https://doi.org/10.1520/ACEM20190039
Firoozia, A. A., Najib, M., & Firoozi, A. A.(2022). Stabilization Expansive Clayey with Nano-Lime to Reduce Environmental Impact. Jurnal Kejuruteraan, 34(6), 1085-1091. DOI: https://doi.org/10.17576/jkukm-2022-34(6)-09
Choobbasti, A. J., Vafaei, A., and Kutanaei, A. A.(2015). Mechanical Properties of Sandy Soil Improved with Cement and Nanosilica . Open Eng, 5:111–116. DOI: https://doi.org/10.1515/eng-2015-0011
Baghban, R. S., & Toufigh, V. M.M.(2020). Stabilization of sandy soil with geopolymers based on nanomaterials and Taftan pozzolan. Amirkabir J. Civil Eng, 52(9), 579-582.
Iranpour, B., & Haddad, A.(2016) The Influence of nanomaterials on collapsible soil treatment. Engineering Geology, 205: 40-53. DOI: https://doi.org/10.1016/j.enggeo.2016.02.015
Al-Gharrawi, A. M. B., Hayal, A. L., & Fattah, M. Y.(2020). Collapse problem treatment of gypseous soil by nanomaterials. International Journal of Engineering, 33(9), 1737-1742. DOI: https://doi.org/10.5829/ije.2020.33.09c.06
Karkush, M. O., Al-Murshedi, A. D., and Karim, H. H.(2020). Investigation of the impacts of nano-clay on the collapse potential and geotechnical properties of Gypseous soils. Jordan Journal of Civil Engineering, 14(4): 537–547.
Al-Murshedi, A. D., Karkush, M. O., & Karim, H. H.(2020). Collapsibility and shear strength of gypseous soil improved by nano silica fume (NSF). Key Engineering Materials, 857, 292-301. DOI: https://doi.org/10.4028/www.scientific.net/KEM.857.292
Al-Obaidi, A. A., Al-Mukhtar, M. T., Al-Dikhil, O. M., & Hannona, S. Q.(2020). Comparative study between silica fume and nano silica fume in improving the shear strength and collapsibility of highly gypseous soil. Tikrit Journal of Engineering Sciences, 27(1), 72-78. DOI: https://doi.org/10.25130/tjes.27.1.10
