Main Article Content

Athraa S. Ahmed athraa_salman1968@yahoo.com


Abstract

Bioactive glass nanoparticles (BGNs) are potentially significant in the biomedical field because of their bioactive, biocomposite, and versatile nature of applications in various therapeutic fields. This review discusses the synthesis of BGNs through the sol-gel method, which is a low-temperature process, offering the opportunity to achieve a controlled composition of the BGNs for their application in medicine. The morphological, structural, and chemical characterization methods are explained to show how these properties affect the bioactivity of BGN and its fitness for a particular application. BGNs have been effectively used in bone regeneration, drug delivery, antibacterial treatments, and wound healing due to their ability to combine with bone tissue, release therapeutic ions, and deliver the drug accordingly. It also points to future possibilities of BGNs in more sophisticated areas, such as cancer treatment and bioimaging, and calls for more design in strengthening their applications in healthcare-related fields. This evaluation highlights the role of BGNs in promoting the progress of biomedical science and substantiates the possibility of providing a substantial contribution to personalized and regenerative medicine.


 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
1.
AL-lamei A, Ahmed AS. Synthesis and characterization of bioactive glass Nanoparticles by sol-gel method. Review Article. . j. adv. sci. eng. technol. [Internet]. 2025 Aug. 13 [cited 2025 Oct. 20];8(1):1-19. Available from: https://www.jasetj.com/index.php/jaset/article/view/1215
Section
Review Article
Author Biography

Asmaa AL-lamei, college of science

Chemistry department

References

Huang, C., Yu, M., Li, H., Wan, X., Ding, Z., Zeng, W., & Zhou, Z. (2021) .Research progress of bioactive glass and its application in orthopedics. Advanced Materials Interfaces, 8(22): p. 2100606. DOI: https://doi.org/10.1002/admi.202100606

Baino, F., S. Hamzehlou, and S. Kargozar. (2018).Bioactive glasses: where are we and where are we going? Journal of functional biomaterials, 9(1): p. 25. DOI: https://doi.org/10.3390/jfb9010025

Kargozar, S., Baino, F., Hamzehlou, S., Hill, R. G., & Mozafari, M. (2018). Bioactive glasses are entering the mainstream. Drug discovery today,23(10): p. 1700-1704. DOI: https://doi.org/10.1016/j.drudis.2018.05.027

Anand, A., B. Kundu, and S.K. Nandi (2022). Mesoporous bioactive glass for bone tissue regeneration and drug delivery. Nanoengineering of Biomaterials, p. 343-370. DOI: https://doi.org/10.1002/9783527832095.ch11

Zhao, Y., Zhang, Z., Pan, Z., & Liu, Y. (2021). Advanced bioactive nanomaterials for biomedical applications. In Exploration. Wiley Online Library. DOI: https://doi.org/10.1002/EXP.20210089

Tomar, G. B., Dave, J. R., Mhaske, S. T., Mamidwar, S., & Makar, P. K. (2020).Applications of Nanomaterials in Bone Tissue Engineering. Functional Bionanomaterials: From Biomolecules to Nanoparticles, p. 209-250. DOI: https://doi.org/10.1007/978-3-030-41464-1_10

Van Rijt, S., K. De Groot, and S.C. Leeuwenburgh,.(2022).Calcium phosphate and silicate-based nanoparticles: history and emerging trends. Tissue Engineering Part A,28(11-12): p. 461-477. DOI: https://doi.org/10.1089/ten.tea.2021.0218

Zheng, K. and A.R. Boccaccini. (2017). Sol-gel processing of bioactive glass nanoparticles: A review. Advances in Colloid and Interface Science, 249: p. 363-373. DOI: https://doi.org/10.1016/j.cis.2017.03.008

Catauro, M. and S.V. Ciprioti. (2021). Characterization of hybrid materials prepared by the sol-gel method for biomedical implementations. A critical review. Materials, 14(7): p. 1788. DOI: https://doi.org/10.3390/ma14071788

Deshmukh, K., Kovářík, T., Křenek, T., Docheva, D., Stich, T., & Pola, J. (2020).Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC advances,10(56): p. 33782-33835. DOI: https://doi.org/10.1039/D0RA04287K

Baino, F., Fiume, E., Miola, M., & Verné, E. (2018). Bioactive sol‐gel glasses: processing, properties, and applications. International Journal of Applied Ceramic Technology,15(4): p. 841-860. DOI: https://doi.org/10.1111/ijac.12873

Widiyanti, S., (2020).Synthesis of nano bioactive glass or bioglass. RHAZES: Green and Applied Chemistry, 10: p. 01-32.

Catauro, M. and S. Vecchio Ciprioti, (2019). Sol-gel synthesis and characterization of hybrid materials for biomedical applications. Thermodynamics and Biophysics of Biomedical Nanosystems: Applications and Practical Considerations, p. 445-475. DOI: https://doi.org/10.1007/978-981-13-0989-2_13

Pajares-Chamorro, N. and X. Chatzistavrou, (2020).Bioactive glass nanoparticles for tissue regeneration. Acs Omega, 5(22): p. 12716-12726. DOI: https://doi.org/10.1021/acsomega.0c00180

Kesse, X., C. Vichery, and J.-M. Nedelec. (2019). Deeper insights into a bioactive glass nanoparticle synthesis protocol to control its morphology, dispersibility, and composition. Acs Omega, 4(3): p. 5768-5775. DOI: https://doi.org/10.1021/acsomega.8b03598

Zheng, K., Sui, B., Ilyas, K., & Boccaccini, A. R. (2021). Porous bioactive glass micro-and nanospheres with controlled morphology: Developments, properties and emerging biomedical applications. Materials horizons, 8(2): p. 300-335. DOI: https://doi.org/10.1039/D0MH01498B

Bokov, D., Jalil, A. T., Chupradit, S., Suksatan, W., Ansari, M. J., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021).Nanomaterial by sol‐gel method: synthesis and application. Advances in materials science and engineering, 2021(1): p. 5102014. DOI: https://doi.org/10.1155/2021/5102014

Gonçalves, M.C., (2018). Sol-gel silica nanoparticles in medicine: A natural choice. Design, synthesis, and products. Molecules, 23(8): p. 2021. DOI: https://doi.org/10.3390/molecules23082021

Shrestha, S., B. Wang, and P. Dutta (2020). Nanoparticle processing: Understanding and controlling aggregation. Advances in colloid and interface science, 279: p. 102162. DOI: https://doi.org/10.1016/j.cis.2020.102162

Innocenzi, P. and P. Innocenzi, (2019). The precursors of the sol-gel process. The Sol-toGel Transition, p. 7-19. DOI: https://doi.org/10.1007/978-3-030-20030-5_2

Yousif, A.H.E. and M.S.A. Eltoum, (2020). Mechanistic Investigation of Sol–Gel Reactions Using Alkoxysilane Precursor. Chemical Science International Journal, 29(5): p. 25-31. DOI: https://doi.org/10.9734/CSJI/2020/v29i530178

Kajihara, K., K. Kanamori, and A. Shimojima (2022). Current status of sol–gel processing of glasses, ceramics, and organic–inorganic hybrids: a brief review. Journal of the Ceramic Society of Japan, 130(8): p. 575-583. DOI: https://doi.org/10.2109/jcersj2.22078

Kohns, R., Torres-Rodríguez, J., Euchler, D., Seyffertitz, M., Paris, O., Reichenauer, G., Enke, D., & Huesing, N. (2023). Drying of Hierarchically Organized Porous Silica Monoliths– Comparison of Evaporative and Supercritical Drying. Gels, 9(1): p. 71. DOI: https://doi.org/10.3390/gels9010071

Polskaya, S. Older Learners vs. Younger (2020): Who Is Better at Foreign Language Vocabulary Acquisition? in INTED2020 Proceedings. IATED. DOI: https://doi.org/10.21125/inted.2020.2171

Garden, J. and S. Pike, (2018). Hydrolysis of organometallic and metal–amide precursors: synthesis routes to oxo-bridged heterometallic complexes, metal-oxo clusters, and metal oxide nanoparticles. Dalton Transactions, 47(11): p. 3638-3662. DOI: https://doi.org/10.1039/C8DT00017D

Meechoowas, E., Tungsanguan, O., Pamok, C., Tapasa, K., & Chaiarrekij, S. (2023). Investigation of morphology, structure, and bioactivity of bioactive glass. Materials Today: Proceedings. DOI: https://doi.org/10.1016/j.matpr.2023.04.643

Ruiz-Clavijo, A., Hurt, A. P., Kotha, A. K., & Coleman, N. J. (2019). Effect of calcium precursor on the bioactivity and biocompatibility of sol-gel-derived glasses. Journal of Functional Biomaterials, 10(1): p. 13. DOI: https://doi.org/10.3390/jfb10010013

Pokhrel, S. (2018). Hydroxyapatite: preparation, properties, and its biomedical applications. Advances in Chemical Engineering and Science, 8(04): p. 225. DOI: https://doi.org/10.4236/aces.2018.84016

Durgalakshmi, D., R. Ajay Rakkesh, and B. Subramanian. (2020). Bioactive assessment of bioactive glass nanostructures synthesized using synthetic and natural silica resources. International Journal of Applied Ceramic Technology, 17(4): p. 1976-1984. DOI: https://doi.org/10.1111/ijac.13460

Li, Y., Chen, L., Chen, X., Hill, R., Zou, S., Wang, M., Liu, Y., Wang, J., & Chen, X. (2021). High phosphate content in bioactive glasses promotes osteogenesis in vitro and in vivo. Dental Materials, 37(2): p. 272-283. DOI: https://doi.org/10.1016/j.dental.2020.11.017

Xiao, Y. and J.M. Hill, (2020). Solid acid catalysts produced by sulfonation of petroleum coke: Dominant role of aromatic hydrogen. Chemosphere, 248: p. 125981. DOI: https://doi.org/10.1016/j.chemosphere.2020.125981

Benvenuti, J. and J.H.Z. dos Santos.(2021). Green solvents for remediation technologies, in Green Sustainable Process for Chemical and Environmental Engineering and Science. 2021, Elsevier. p. 23-30. DOI: https://doi.org/10.1016/B978-0-12-821884-6.00015-2

Gholami, T., Seifi, H., Dawi, E. A., Pirsaheb, M., Seifi, S., Aljeboree, A. M., Hamoody, A. M., Altimari, U. S., Abass, M. A., & Salavati-Niasari, M. (2024). A review on investigating the effect of solvent on the synthesis, morphology, shape, and size of nanostructures. Materials Science and Engineering: B,304: p. 117370. DOI: https://doi.org/10.1016/j.mseb.2024.117370

Sigwadi, R. A., Dhlamini, M. S., Mokrani, T., & Nonjola, P. (2017). Effect of synthesis temperature on particle size and morphology of zirconium oxide nanoparticle. Journal of Nano Research, 50: p.18- 31. DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.50.18

Piñero, S., S. Camero, and S. Blanco.(2017). Silver nanoparticles: Influence of the temperature synthesis on the particles’ morphology. In Journal of Physics: Conference Series. IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/786/1/012020

Chaves, D.H., V.S. Birchal, and E.F. Costa Junior (2024). Particle morphology and shrinkage in spray dryers: A review focused on modeling single droplet drying. Drying Technology, p. 1-13. DOI: https://doi.org/10.1080/07373937.2024.2333934

Barbero, F., Moriones, O. H., Bastús, N. G., & Puntes, V. F. (2019).Dynamic equilibrium in the cetyltrimethylammonium bromide–Au nanoparticle bilayer, and the consequent impact on the formation of the nanoparticle protein corona. Bioconjugate Chemistry, 30(11): p. 2917-2930. DOI: https://doi.org/10.1021/acs.bioconjchem.9b00624

Katariya, N., Farswan, A. S., Nainwal, N., & Kumar, G. (2024). Diagnostic and Therapeutic Role of Mesoporous Silica Nanoparticles in Combating Cancer. Int J App Pharm, 16(5): p. 31-37. DOI: https://doi.org/10.22159/ijap.2024v16i5.51647

Olbert, M., Neděla, V., Jirák, J., & Hudec, J. (2024). Size and shape analysis of micro-to nano-particles of quartz powders using advanced electron microscopy and laser diffraction methods. Powder Technology, 433: p. 119250. DOI: https://doi.org/10.1016/j.powtec.2023.119250

Brodusch, N., Brahimi, S. V., Barbosa De Melo, E., Song, J., Yue, S., Piché, N., & Gauvin, R. (2021). Scanning Electron Microscopy versus Transmission Electron Microscopy for Material Characterization: A Comparative Study on High-Strength Steels. Scanning, 2021(1): p. 5511618. DOI: https://doi.org/10.1155/2021/5511618

Knysh, A., P. Sokolov, and I. Nabiev (2023). Dynamic Light Scattering Analysis in Biomedical Research and Applications of Nanoparticles and Polymers. Journal of Biomedical Photonics & Engineering, 9(2): p. 020203. DOI: https://doi.org/10.18287/JBPE23.09.020203

Nawaz, Q., et al.,(2021). Crystallization study of sol–gel derived 13-93 bioactive glass powder. Journal of the European Ceramic Society, 41(2): p. 1695-1706. DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.09.052

Tiama, T.M., et al. (2023). Molecular and biological activities of metal oxide-modified bioactive glass. Scientific Reports, 13(1): p. 10637. DOI: https://doi.org/10.1038/s41598-023-37017-z

Leite, Á. and J. Mano,(2017). Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. Journal of Materials Chemistry B, 5(24): p. 4555-4568. DOI: https://doi.org/10.1039/C7TB00404D

Azizipour, E., et al., (2021). A novel hydrogel scaffold contained bioactive glass nanowhisker (BGnW) for osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro. International journal of biological macromolecules, 174: p. 562-572. DOI: https://doi.org/10.1016/j.ijbiomac.2021.01.002

Kim, J.-J., A. El-Fiqi, and H.-W. Kim (2017). Synergetic cues of bioactive nanoparticles and nanofibrous structure in bone scaffolds to stimulate osteogenesis and angiogenesis. ACS Applied Materials & Interfaces, 9(3): p. 2059-2073. DOI: https://doi.org/10.1021/acsami.6b12089

Dixon, D.T. and C.T. Gomillion, (2021). Conductive scaffolds for bone tissue engineering: current state and future outlook. Journal of Functional Biomaterials, 13(1): p. 1. DOI: https://doi.org/10.3390/jfb13010001

Dorati, R., et al., (2017). Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy. Pharmaceuticals, 10(4): p. 96. DOI: https://doi.org/10.3390/ph10040096

Taye, M.B. (2022). Biomedical applications of ion-doped bioactive glass: A review. Applied Nanoscience, 12(12): p. 3797-3812. DOI: https://doi.org/10.1007/s13204-022-02672-7

Ege, D., K. Zheng, and A.R. Boccaccini (2022). Borate bioactive glasses (BBG): bone regeneration, wound healing applications, and future direction. ACS applied bio materials, 5(8): p. 3608-3622. DOI: https://doi.org/10.1021/acsabm.2c00384