Synthesis and characterization of bioactive glass Nanoparticles by sol-gel method. Review Article.
Main Article Content
Abstract
Bioactive glass nanoparticles (BGNs) are potentially significant in the biomedical field because of their bioactive, biocomposite, and versatile nature of applications in various therapeutic fields. This review discusses the synthesis of BGNs through the sol-gel method, which is a low-temperature process, offering the opportunity to achieve a controlled composition of the BGNs for their application in medicine. The morphological, structural, and chemical characterization methods are explained to show how these properties affect the bioactivity of BGN and its fitness for a particular application. BGNs have been effectively used in bone regeneration, drug delivery, antibacterial treatments, and wound healing due to their ability to combine with bone tissue, release therapeutic ions, and deliver the drug accordingly. It also points to future possibilities of BGNs in more sophisticated areas, such as cancer treatment and bioimaging, and calls for more design in strengthening their applications in healthcare-related fields. This evaluation highlights the role of BGNs in promoting the progress of biomedical science and substantiates the possibility of providing a substantial contribution to personalized and regenerative medicine.
Downloads
Metrics
Article Details
References
Huang, C., Yu, M., Li, H., Wan, X., Ding, Z., Zeng, W., & Zhou, Z. (2021) .Research progress of bioactive glass and its application in orthopedics. Advanced Materials Interfaces, 8(22): p. 2100606. DOI: https://doi.org/10.1002/admi.202100606
Baino, F., S. Hamzehlou, and S. Kargozar. (2018).Bioactive glasses: where are we and where are we going? Journal of functional biomaterials, 9(1): p. 25. DOI: https://doi.org/10.3390/jfb9010025
Kargozar, S., Baino, F., Hamzehlou, S., Hill, R. G., & Mozafari, M. (2018). Bioactive glasses are entering the mainstream. Drug discovery today,23(10): p. 1700-1704. DOI: https://doi.org/10.1016/j.drudis.2018.05.027
Anand, A., B. Kundu, and S.K. Nandi (2022). Mesoporous bioactive glass for bone tissue regeneration and drug delivery. Nanoengineering of Biomaterials, p. 343-370. DOI: https://doi.org/10.1002/9783527832095.ch11
Zhao, Y., Zhang, Z., Pan, Z., & Liu, Y. (2021). Advanced bioactive nanomaterials for biomedical applications. In Exploration. Wiley Online Library. DOI: https://doi.org/10.1002/EXP.20210089
Tomar, G. B., Dave, J. R., Mhaske, S. T., Mamidwar, S., & Makar, P. K. (2020).Applications of Nanomaterials in Bone Tissue Engineering. Functional Bionanomaterials: From Biomolecules to Nanoparticles, p. 209-250. DOI: https://doi.org/10.1007/978-3-030-41464-1_10
Van Rijt, S., K. De Groot, and S.C. Leeuwenburgh,.(2022).Calcium phosphate and silicate-based nanoparticles: history and emerging trends. Tissue Engineering Part A,28(11-12): p. 461-477. DOI: https://doi.org/10.1089/ten.tea.2021.0218
Zheng, K. and A.R. Boccaccini. (2017). Sol-gel processing of bioactive glass nanoparticles: A review. Advances in Colloid and Interface Science, 249: p. 363-373. DOI: https://doi.org/10.1016/j.cis.2017.03.008
Catauro, M. and S.V. Ciprioti. (2021). Characterization of hybrid materials prepared by the sol-gel method for biomedical implementations. A critical review. Materials, 14(7): p. 1788. DOI: https://doi.org/10.3390/ma14071788
Deshmukh, K., Kovářík, T., Křenek, T., Docheva, D., Stich, T., & Pola, J. (2020).Recent advances and future perspectives of sol–gel derived porous bioactive glasses: a review. RSC advances,10(56): p. 33782-33835. DOI: https://doi.org/10.1039/D0RA04287K
Baino, F., Fiume, E., Miola, M., & Verné, E. (2018). Bioactive sol‐gel glasses: processing, properties, and applications. International Journal of Applied Ceramic Technology,15(4): p. 841-860. DOI: https://doi.org/10.1111/ijac.12873
Widiyanti, S., (2020).Synthesis of nano bioactive glass or bioglass. RHAZES: Green and Applied Chemistry, 10: p. 01-32.
Catauro, M. and S. Vecchio Ciprioti, (2019). Sol-gel synthesis and characterization of hybrid materials for biomedical applications. Thermodynamics and Biophysics of Biomedical Nanosystems: Applications and Practical Considerations, p. 445-475. DOI: https://doi.org/10.1007/978-981-13-0989-2_13
Pajares-Chamorro, N. and X. Chatzistavrou, (2020).Bioactive glass nanoparticles for tissue regeneration. Acs Omega, 5(22): p. 12716-12726. DOI: https://doi.org/10.1021/acsomega.0c00180
Kesse, X., C. Vichery, and J.-M. Nedelec. (2019). Deeper insights into a bioactive glass nanoparticle synthesis protocol to control its morphology, dispersibility, and composition. Acs Omega, 4(3): p. 5768-5775. DOI: https://doi.org/10.1021/acsomega.8b03598
Zheng, K., Sui, B., Ilyas, K., & Boccaccini, A. R. (2021). Porous bioactive glass micro-and nanospheres with controlled morphology: Developments, properties and emerging biomedical applications. Materials horizons, 8(2): p. 300-335. DOI: https://doi.org/10.1039/D0MH01498B
Bokov, D., Jalil, A. T., Chupradit, S., Suksatan, W., Ansari, M. J., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021).Nanomaterial by sol‐gel method: synthesis and application. Advances in materials science and engineering, 2021(1): p. 5102014. DOI: https://doi.org/10.1155/2021/5102014
Gonçalves, M.C., (2018). Sol-gel silica nanoparticles in medicine: A natural choice. Design, synthesis, and products. Molecules, 23(8): p. 2021. DOI: https://doi.org/10.3390/molecules23082021
Shrestha, S., B. Wang, and P. Dutta (2020). Nanoparticle processing: Understanding and controlling aggregation. Advances in colloid and interface science, 279: p. 102162. DOI: https://doi.org/10.1016/j.cis.2020.102162
Innocenzi, P. and P. Innocenzi, (2019). The precursors of the sol-gel process. The Sol-toGel Transition, p. 7-19. DOI: https://doi.org/10.1007/978-3-030-20030-5_2
Yousif, A.H.E. and M.S.A. Eltoum, (2020). Mechanistic Investigation of Sol–Gel Reactions Using Alkoxysilane Precursor. Chemical Science International Journal, 29(5): p. 25-31. DOI: https://doi.org/10.9734/CSJI/2020/v29i530178
Kajihara, K., K. Kanamori, and A. Shimojima (2022). Current status of sol–gel processing of glasses, ceramics, and organic–inorganic hybrids: a brief review. Journal of the Ceramic Society of Japan, 130(8): p. 575-583. DOI: https://doi.org/10.2109/jcersj2.22078
Kohns, R., Torres-Rodríguez, J., Euchler, D., Seyffertitz, M., Paris, O., Reichenauer, G., Enke, D., & Huesing, N. (2023). Drying of Hierarchically Organized Porous Silica Monoliths– Comparison of Evaporative and Supercritical Drying. Gels, 9(1): p. 71. DOI: https://doi.org/10.3390/gels9010071
Polskaya, S. Older Learners vs. Younger (2020): Who Is Better at Foreign Language Vocabulary Acquisition? in INTED2020 Proceedings. IATED. DOI: https://doi.org/10.21125/inted.2020.2171
Garden, J. and S. Pike, (2018). Hydrolysis of organometallic and metal–amide precursors: synthesis routes to oxo-bridged heterometallic complexes, metal-oxo clusters, and metal oxide nanoparticles. Dalton Transactions, 47(11): p. 3638-3662. DOI: https://doi.org/10.1039/C8DT00017D
Meechoowas, E., Tungsanguan, O., Pamok, C., Tapasa, K., & Chaiarrekij, S. (2023). Investigation of morphology, structure, and bioactivity of bioactive glass. Materials Today: Proceedings. DOI: https://doi.org/10.1016/j.matpr.2023.04.643
Ruiz-Clavijo, A., Hurt, A. P., Kotha, A. K., & Coleman, N. J. (2019). Effect of calcium precursor on the bioactivity and biocompatibility of sol-gel-derived glasses. Journal of Functional Biomaterials, 10(1): p. 13. DOI: https://doi.org/10.3390/jfb10010013
Pokhrel, S. (2018). Hydroxyapatite: preparation, properties, and its biomedical applications. Advances in Chemical Engineering and Science, 8(04): p. 225. DOI: https://doi.org/10.4236/aces.2018.84016
Durgalakshmi, D., R. Ajay Rakkesh, and B. Subramanian. (2020). Bioactive assessment of bioactive glass nanostructures synthesized using synthetic and natural silica resources. International Journal of Applied Ceramic Technology, 17(4): p. 1976-1984. DOI: https://doi.org/10.1111/ijac.13460
Li, Y., Chen, L., Chen, X., Hill, R., Zou, S., Wang, M., Liu, Y., Wang, J., & Chen, X. (2021). High phosphate content in bioactive glasses promotes osteogenesis in vitro and in vivo. Dental Materials, 37(2): p. 272-283. DOI: https://doi.org/10.1016/j.dental.2020.11.017
Xiao, Y. and J.M. Hill, (2020). Solid acid catalysts produced by sulfonation of petroleum coke: Dominant role of aromatic hydrogen. Chemosphere, 248: p. 125981. DOI: https://doi.org/10.1016/j.chemosphere.2020.125981
Benvenuti, J. and J.H.Z. dos Santos.(2021). Green solvents for remediation technologies, in Green Sustainable Process for Chemical and Environmental Engineering and Science. 2021, Elsevier. p. 23-30. DOI: https://doi.org/10.1016/B978-0-12-821884-6.00015-2
Gholami, T., Seifi, H., Dawi, E. A., Pirsaheb, M., Seifi, S., Aljeboree, A. M., Hamoody, A. M., Altimari, U. S., Abass, M. A., & Salavati-Niasari, M. (2024). A review on investigating the effect of solvent on the synthesis, morphology, shape, and size of nanostructures. Materials Science and Engineering: B,304: p. 117370. DOI: https://doi.org/10.1016/j.mseb.2024.117370
Sigwadi, R. A., Dhlamini, M. S., Mokrani, T., & Nonjola, P. (2017). Effect of synthesis temperature on particle size and morphology of zirconium oxide nanoparticle. Journal of Nano Research, 50: p.18- 31. DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.50.18
Piñero, S., S. Camero, and S. Blanco.(2017). Silver nanoparticles: Influence of the temperature synthesis on the particles’ morphology. In Journal of Physics: Conference Series. IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/786/1/012020
Chaves, D.H., V.S. Birchal, and E.F. Costa Junior (2024). Particle morphology and shrinkage in spray dryers: A review focused on modeling single droplet drying. Drying Technology, p. 1-13. DOI: https://doi.org/10.1080/07373937.2024.2333934
Barbero, F., Moriones, O. H., Bastús, N. G., & Puntes, V. F. (2019).Dynamic equilibrium in the cetyltrimethylammonium bromide–Au nanoparticle bilayer, and the consequent impact on the formation of the nanoparticle protein corona. Bioconjugate Chemistry, 30(11): p. 2917-2930. DOI: https://doi.org/10.1021/acs.bioconjchem.9b00624
Katariya, N., Farswan, A. S., Nainwal, N., & Kumar, G. (2024). Diagnostic and Therapeutic Role of Mesoporous Silica Nanoparticles in Combating Cancer. Int J App Pharm, 16(5): p. 31-37. DOI: https://doi.org/10.22159/ijap.2024v16i5.51647
Olbert, M., Neděla, V., Jirák, J., & Hudec, J. (2024). Size and shape analysis of micro-to nano-particles of quartz powders using advanced electron microscopy and laser diffraction methods. Powder Technology, 433: p. 119250. DOI: https://doi.org/10.1016/j.powtec.2023.119250
Brodusch, N., Brahimi, S. V., Barbosa De Melo, E., Song, J., Yue, S., Piché, N., & Gauvin, R. (2021). Scanning Electron Microscopy versus Transmission Electron Microscopy for Material Characterization: A Comparative Study on High-Strength Steels. Scanning, 2021(1): p. 5511618. DOI: https://doi.org/10.1155/2021/5511618
Knysh, A., P. Sokolov, and I. Nabiev (2023). Dynamic Light Scattering Analysis in Biomedical Research and Applications of Nanoparticles and Polymers. Journal of Biomedical Photonics & Engineering, 9(2): p. 020203. DOI: https://doi.org/10.18287/JBPE23.09.020203
Nawaz, Q., et al.,(2021). Crystallization study of sol–gel derived 13-93 bioactive glass powder. Journal of the European Ceramic Society, 41(2): p. 1695-1706. DOI: https://doi.org/10.1016/j.jeurceramsoc.2020.09.052
Tiama, T.M., et al. (2023). Molecular and biological activities of metal oxide-modified bioactive glass. Scientific Reports, 13(1): p. 10637. DOI: https://doi.org/10.1038/s41598-023-37017-z
Leite, Á. and J. Mano,(2017). Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. Journal of Materials Chemistry B, 5(24): p. 4555-4568. DOI: https://doi.org/10.1039/C7TB00404D
Azizipour, E., et al., (2021). A novel hydrogel scaffold contained bioactive glass nanowhisker (BGnW) for osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro. International journal of biological macromolecules, 174: p. 562-572. DOI: https://doi.org/10.1016/j.ijbiomac.2021.01.002
Kim, J.-J., A. El-Fiqi, and H.-W. Kim (2017). Synergetic cues of bioactive nanoparticles and nanofibrous structure in bone scaffolds to stimulate osteogenesis and angiogenesis. ACS Applied Materials & Interfaces, 9(3): p. 2059-2073. DOI: https://doi.org/10.1021/acsami.6b12089
Dixon, D.T. and C.T. Gomillion, (2021). Conductive scaffolds for bone tissue engineering: current state and future outlook. Journal of Functional Biomaterials, 13(1): p. 1. DOI: https://doi.org/10.3390/jfb13010001
Dorati, R., et al., (2017). Biodegradable scaffolds for bone regeneration combined with drug-delivery systems in osteomyelitis therapy. Pharmaceuticals, 10(4): p. 96. DOI: https://doi.org/10.3390/ph10040096
Taye, M.B. (2022). Biomedical applications of ion-doped bioactive glass: A review. Applied Nanoscience, 12(12): p. 3797-3812. DOI: https://doi.org/10.1007/s13204-022-02672-7
Ege, D., K. Zheng, and A.R. Boccaccini (2022). Borate bioactive glasses (BBG): bone regeneration, wound healing applications, and future direction. ACS applied bio materials, 5(8): p. 3608-3622. DOI: https://doi.org/10.1021/acsabm.2c00384